If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50w^2+12w=-8w
We move all terms to the left:
50w^2+12w-(-8w)=0
We get rid of parentheses
50w^2+12w+8w=0
We add all the numbers together, and all the variables
50w^2+20w=0
a = 50; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·50·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*50}=\frac{-40}{100} =-2/5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*50}=\frac{0}{100} =0 $
| -7.5r-6=-7r-6 | | 3x+13=-13+2x | | 15x+8x=95 | | 5x-27=402 | | 8x+6−2x=−6x−17+x | | 5a=a+72 | | x+0.19x=50 | | -4u-19=-15 | | f=7(145)+96 | | a/7.4=8.3 | | 9k-10=7.5k-10 | | Y=0.27x | | 4/3x-7=5x-13 | | 1+7x+6x=6x+5x-9 | | 4/3x-7=5x-12 | | Y=$3.50x | | s/7+3=13 | | 3x+9+5x-2=11x+4 | | -5x+2x+14=-10 | | 8(1+b)=-2(4b+4 | | 12u+3u=63 | | p/15+15=19 | | 5t+23=88 | | 8.6x+2.4-11=54 | | (0.05+x)(0.5+(0.62-x))=0 | | t=9.25 | | t=9+0.25/1 | | 8x2+5x=17x | | 13s+1=14 | | 7=-16x-1 | | 5(t+3.50)=3(2t+2.75) | | 180-(7x+9)=5x+3 |